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I. ABSTRACT 
 
 

With the exponential growth of supercomputers in parallelism, applications are          
growing more diverse. This includes traditional large-scale HPC MPI jobs and           
ensemble workloads such as finer-grained many-task computing (MTC)        
applications. The growing number of workloads, including tightly-integrated        
experimental facilities and emergency decision-making tasks, require       
response-times that are not currently compatible with typical queue wait-time          
policies. Hence, any policy to accommodate real-time requirements will impact          
system utilization and disrupt other users. The project estimates the          
consequences of three potential real-time scheduling policies to analyse and          
estimate the HPC facility’s impact on an incoming real-time job on NERSC's            
Cori Supercomputer. These proposed policies tend to improve the allocation          
procedure by immediately allocating real-time jobs without interrupting the long          
run batch jobs in the memory. 

 

II. INTRODUCTION 
 
 

Supercomputers are extremely contended mainframe computers used for        
scientific calculations. All work on the supercomputer is presented as a batch of             
tasks. These batch activities are extremely complex as science computations are           
extremely big calculations with petabytes of information. The computational         
resources for these applications on our supercomputer are accessed through a           
scheduler. The scheduler we use is Simple Linux Utility for Resource           
Management (SLURM) and it is an open-source scheduler for Linux and           
Unix-like kernels that schedules and tracks batch tasks. These tasks are           
submitted as jobs and just about all programs are run as batch tasks on the Cori                
supercomputer. 
 
All the batch tasks in Cori are managed by the batch System. Managing it is a                
challenging process as the tasks include complicated SPMD instructions i.e.          
Single Program Multiple Data. Each instruction coming in as a batch task is             
divided into multiple tasks and given to different processors to solve the overall             
task in parallel. In all, there are more than 50,000 SPMD instructions running             
per day on Cori. Hence the scheduling process for batch tasks’ is highly             
concurrent in nature and overloads itself with a lot of other emergency issues.             
The HPC resources are limited and all the instructions/tasks are highly           
demanding which is the biggest load factor to be reduced as much as possible. 
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Our research solely focuses on real-time jobs. Various kinds of jobs are entering             
the Cori supercomputer every day. Two main kinds of jobs for our research             
purpose are Batch Jobs (which is also referred to as a normal job in the writing)                
and real-time jobs. Real-time jobs are jobs that are urgent and need to be              
responded to immediately. Apart from real-time jobs, all other kinds of jobs in             
our case are considered normal batch jobs. Examples of real-time jobs are jobs             
Advanced Light Source (ALS) submitting jobs with petabytes of beamline data           
from the cyclotron and Satellite data for measuring angles from the           
Computational Resource division. 
 
Upgrading and changing the policies in an application to architecture is a            
challenge, not only in porting the code but also in understanding and tuning the              
performance. Rather than manually performing the analysis, people tend to use           
tools to motivate optimization. Therefore approaches to simulate the real-time          
environment and observing the performances are becoming one of the most           
critical components in the modern policy designs. These proposed policies have           
been impactful on hypothetical real-time jobs used in the simulation process,           
increasing the performance of the system and cutting down the waste by            
canceling the jobs and reducing the idle node hours per node request. 
 
A lot of research shows how we can add time-sharing HPC workload and             
space-sharing workload to reduce the total time from submission to till the            
completion of the job. This research is focused on understanding and estimating            
the impact of the new policies designed with time and memory as a constraint              
on system utilization. Also, how can we immediately allocate resources to           
incoming real-time jobs without making them wait and not letting other batch            
jobs suffer because of real-time jobs? The current policies either immediately           
allocate the resources to the real-time job by killing a fraction of normal jobs              
running in the memory or it makes the real-time job wait in the draining              
process. Our analysis shows how to combat this situation, and also the answers             
to these upgrades are minimal effort policy upgrades. 

 
 

III. PROGRESS & RESULTS 
 

In this section, we will cover new strategies to overcome the problem discussed             
above. Firstly, why and how the data was chosen for this research and each of               
the strategies in detail with observations. 
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DATA COLLECTION 
 
The importance of data collection was to maintain a realistic scenario in the             
simulation process. Instead of making our own randomized data we collected           
the data from the actual users. The data we fetched from the SLURM database              
belongs to the old and current NERSC users between the dates 11/01/2017 and             
11/02/2018.  
 
We have analyzed three distinct real-time queue strategies in this research work            
for incoming real-time jobs. This is performed on the Cori Supercomputer for            
KNL architecture and Haswell architecture. Overall, analyses show the impact          
and scale of improvement by answering some meaningful questions like, How           
much time does a real-time job have to wait after submitting the job into the               
Cori supercomputer? How much time does the nodes waste being Idle nodes            
while in the draining process? How much time does the job preemption policy             
waste by canceling the running batch jobs from the memory on arrival of the              
real-time job? How much memory pressure is created on the job pausing policy             
when the real-time job comes into the memory? 

METHODOLOGY 
 
We obtained from NERSC, a performance log with details including the number            
of nodes used for the job, start time of the job, end time of the job, memory                 
footprint, maximum resident set size (size of memory the job reserved in the             
runtime), the architecture of the job (KNL, Haswell, Shared) for all jobs that ran              
on Cori’s nodes during 2018. These performance logs are generated daily in the             
and contain petabytes (1000s of terabytes) of data. These logs are a part of the               
DB01 database which is a subset of the Slurms’ original database and is used              
for research purposes. We randomly sampled 50 time points that correspond to            
the submission times for a set of hypothetical real-time jobs. Job logs were then              
analyzed to compute the median wait-time, utilization-loss and memory         
availability for each of the proposed scheduling policies described below.          
Increasing the time-points for the analysis is always useful for accuracy but,            
because of time constraints, 50 time-points were used for each simulation.  
 
The table below helps in understanding the present workload on the Cori            
supercomputer on its compute nodes. The workload ranges from 1000 jobs to            
60,000 jobs every day, with MPI running going over 50,000 a few times, which              
increases the overload on Cori. The total number of compute nodes 12076 and             
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is limited to any number of jobs coming in. The brief outlook for this              
configuration is shown below​10​;  

 

Cori and its Workload at Glance 

Compute Nodes 9688 (KNL), 2388 (Haswell) 

Total Cores 658,784 (KNL), 76,416 (Haswell) 

Jobs per day 60,000 

Nodes per Job 1-9688, Avg.= 716 hours 

Time per Job <1min - 8 days, Avg.= 19 hours 

Table 1. Cori and its Workload at Glance 
 

POLICIES 
 

In order to perform the simulation experiment we came up with three novel             
policies (Draining, Job Cancelation, Memory Availability), tested them in a          
simulated environment and discussed the results and impact of system          
utilization. 
 
POLICY 1 - DRAINING: 
 
The first policy we considered is based on measuring the impact on the waiting              
time of the supercomputer during an incoming real-time job as a result of which              
the system draining process begins. The policy states— ​Upon submission of a            
real-time job, the compute nodes are drained by allowing currently running           
batch jobs to complete normally and prohibiting batch jobs from starting until            
the real-time job begins.  
 
For instance in the figure below, If point ‘​a​’ is the submission time of the               
real-time job, then no batch jobs will start until the real-time job starts at point               
‘​b​’.  
 
Draining has two undesirable consequences. 

1. The real-time job does not start immediately. 
2. Some nodes are left unused (Idle) while waiting until there are enough            

free nodes available for the real-time job to start. 
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Fig.1. Showing the draining process of batch jobs from point a to point b to 

release busy nodes for real-time jobs. 
 

Equation (1) below describes that at a particular time stamp ‘​t​’, ​t​s being the              
arrival time of the real-time job j, available idle nodes for allocating it to the               
real-time job. So, with this equation we can measure if the the available nodes              
are less than the required nodes for the real-time job then how long the real-time               
job has to wait in the draining process before getting started. This impact will              
help us in understanding wait time metrics well for any real-time job.  
 
Nodes available at time ​t is the vacancy of nodes among the total number of               
nodes in each architecture (KNL, Haswell). Here, we are convoluting the step            
function with jobs running at time ​t and to consider only those jobs from left to                
right in the queue Fig. 1. until we reach the requirement of the real-time job in                
the draining process. Adding ​n​0 to the final value as there are a few unused               
nodes in the system. 
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Let's look at the wait time metrics described in the equation (1). Once you have               
the wait time for every instance (for every value of the node request as in Fig.                
2.a.), we can also calculate how many nodes were idle at the time of draining               
process. 
 
In the Equation (2) below, Utilization loss at time ​t is total idle-hours while              
draining the system Fig. 1. when the nodes were neither being utilised by the              
batch jobs nor by the real-time jobs, they were eventually wasted. Fig. 2.b. is              
shown by idle node hours per node requested. We calculate the area of idle              
nodes per node requested by convoluting the time difference in the x-axis (i.e.,             
arrival time of real-time job and finish time of batch job) with current running              
jobs. This convolution is done only with the current running jobs in the stack              
from top to bottom until we reach the required idle node value. We have added               
n​0 with idle-node area to the final value as realistically there are approximately             
2% nodes which are not utilized at all. 
 

 
 
 

 
 

Here,  
n0  =  Idle nodes at the time of real-time job submission  
t​f  =  Completion time for normal jobs. 
j  =  Index of “normal” jobs running at t​0​. 
t  =  Submission of real-time job in the queue. 
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Fig. 2.a. Impact on waiting-time (in hours) for the real-time job during the 
system draining procedure to acquire N-nodes at time t. 

 
For the Fig. 2.a. Until 2048 nodes there is almost no wait-time if a real-time job                
just came in and demanded nodes. A useful metric to note here would be the               
error bars in the plot. The error bars covers the 25​th percentile (lower limit) and               
the 75​th percentile (Upper limit) of the median 50​th percentile value. This range             
from the lower limit to the upper limit is the inner-quartile range (IQR) for the               
waiting time in hours. This plot shows the centred position and the spread             
across the error bars which overall summarizes the result at each point in x-axis              
very well. 
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Fig. 2.b. Node-hours wasted by the Idle Nodes while draining the system for 
every arrival of a real-time job requiring N-nodes at time t. 

 
For the Fig. 2.b. It looks like at node request value around 1024 — Idle node                
hours increases frequently which means the system is draining a lot at that point              
for the real-time job. So for a node request value of less than 1024 there is very                 
little impact on system utilization when an incoming job demands for the            
compute nodes that Cori can easily provide. 
 

POLICY 2 - JOB CANCELLATION: 
 
The second policy is to consider measuring the impact on the system's time and              
computational waste when we cancel a fraction of running “normal” jobs on the             
arrival of real-time jobs. This policy states— ​Upon submission of a real-time            
job, a fraction of the currently running batch jobs are canceled to allow the              
real-time job to start immediately. Jobs are selected for the cancelation to            
minimize waste of computational resources. Also, computational resources are         
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limited to space and can be made only by canceling jobs. This policy is              
extremely disruptive to users whose jobs are canceled. 
 
From a normal NERSC user's perspective, the policy is extremely irritating as            
the normal jobs are terminated as soon as the real-time job arrives. But this              
policy definitely does not waste a lot of hours, days and computational energy             
by preempting the job. Also, jobs with low priority queues can be requeued             
back and while jobs in a medium priority queue may be suspended. Despite             
being disruptive, it is less disruptive to the current approach used by NERSC. 
 
The useful observation to note here is that, on each node request value, we              
know the amount of time we waste in hours. So we can now constraint to cancel                
only those jobs in the queue which immediately started or maybe a few minutes              
back (this value can be set in the policy). So that we prevent those “normal”               
jobs being canceled/preempted which had been running for hours and days. In            
this way, we do not waste a lot of time and computational power used by the                
Cori supercomputer.  
 
Equation (3) below describes, the Hours wasted at time ​t which is the total hours               
wasted on an arrival of real-time job. Here, the time difference (​t - t​sj​) is the                
difference between run time of the normal batch job and arrival of the real-time              
job which is basically how long did the batch job run before getting canceled.              
This run-time is convoluted with respective job ​j which is canceled/preempted           
from the memory. The summation of all such jobs gives the total hours wasted              
by each architecture. 
 

 
 

 
 

Where, 
j =   Index of batch jobs running at time ‘​t​’. 
t​ij =   Time when the normal batch-job ‘​j​’ started 
n =   Number of Iterations 
t =   Submission of real-time job in the queue 
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Fig. 3. Node-hours are wasted by canceling a fraction of the running batch jobs 
for incoming N real-time jobs. 

 
In Fig. 3., As the number of nodes requested by the incoming real-time job              
increases the number of hours wasted per node request increase by canceling the             
running jobs per node. This can be resolved by various approaches; time            
threshold or time slicing, etc.  

POLICY 3 - JOB PAUSING: 
 
In this policy, we focused on measuring the impact on the system's memory             
when the “normal” jobs are paused and still hold the memory while the memory              
is allocated to the real-time job. We were able to analyse the memory pressure              
after the memory was given to a real-time job. The policy helps in speeding up               
the allocation task and it is stated as— ​Upon submission of a real-time job, a               
fraction of the currently running batch jobs are paused (using, for example, the             
nice command) to allow the real-time job to start immediately. The paused jobs             
maintain their memory footprint, so jobs are selected for pausing to maximize            
the memory available to the real-time job. 
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Job Pausing policy is slightly different and less expensive than Slurm’s Job            
preemption policy.  
 
Preemption is much more like our job cancellation policy (policy 2) which is to              
cancel the jobs which recently came into the queue on an arrival of real-time. It               
is usually used with a checkpoint restart approach. On the checkpoint-restart           
approach, the preempted job is expected to have written a checkpoint file in the              
file system while it was running. Now on the arrival of the real-time job the               
batch job running in the memory gets preempted, it stops immediately and all of              
its memory is freed to allocate the real-time job. It may or may not need to wait                 
in the queue before it restarts. But when it restarts, the scheduler has to again               
read the checkpoint file from the file system and put the batch job back into the                
queue and not the memory. We also need to use a different library in a slurm to                 
read and write the files into the file system in the Slurm scheduler and call the                
library whilst performing read-write operations at all times and loading them           
into the memory as well. This in addition increases the memory load.            
Preemption approach involves the writing of the checkpoint file in the file            
system and then reading it again from the file system which is really expensive.  
 
On the other hand, the ​job pausing policy is less disruptive for the low priority               
user. It does not require any checkpoint file and hence it does not have to write                
and read the check-point file and does not have to free the memory. So in this                
case, when a real-time job is submitted, it pauses the batch jobs running but              
does not remove those jobs from the memory. This pausing can be achieved by              
nice and ​renice command. So when the batch jobs restart the scheduler does not              
have to read any checkpoint file from the file system and hence it does not even                
go through the queue process again. 

 
The ​nice parameter is associated with Linux, a priority parameter with each job             
can be set or changed by the user. Linux kernel then reserves CPU time for each                
process based on its relative priority value. ​Running at a lower priority is             
considered "nicer", because it allows other processes to use a bigger share of             
CPU time. 
 
Currently, the ‘Job Pausing’ policy is restricted to one real-time job per node             
and one paused job per node. The expected improvement through this policy is             
therefore quite small but still being counted. For example, if there are ‘​n​’             
real-time jobs in the queue and the ‘​m​’ jobs paused in the memory on a node.                
Then all the ‘​m​’ jobs are reserving a fraction of the memory which will              
eventually increase the overall waiting time of the jobs in the queue. And hence,              
the time of completion of the entire queue for that node will increase. 
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Equation 4 given below describes Memory Availability. To calculate memory          
available in a node at time t, implies:       axrss)( tj

nj * m   

which gives the total memory usedaximum resident set size)( number of  tasks
number of  nodes * m        

by job ​j at time ​t​. We are subtracting the used memory value from 96, as 96 is                  
the maximum memory size for every single node in Cori KNL architecture. 
 

 

 
 

Here, 
t​j   =    Number of tasks launched by job ​j. 
n​j   =    Number of nodes used by job ​j.  
maxrss j​  =   Maximum resident set size, amount of memory reserved by job ​j

        on runtime. 
 

 
 

Fig. 4. Median Memory availability for the incoming real-time job on the 
arrival of a real-time job requiring N-nodes.  

 13  



 
 
In Fig. 4. If the node request is less than 85 percent of the total number of nodes                  
there is no memory pressure for that node for the incoming real-time job. But if               
in case the real-time job is really exceptional and demands more than 85 percent              
of the total nodes then we can see a slight increase in memory pressure. 

 
 

IV. RELATED WORK 
 
 
The current version of the Slurm configuration in the Cori Supercomputer is            
implemented by the NERSC group. The policies in the current system for            
real-time jobs are using backfill algorithms which are highly efficient and the            
overall system has approximately 98 percent system utilization, but most of the            
time when an arbitrary real-time job comes in, the scheduler either disrupts the             
other NERSC users or makes the real-time job wait under the draining process             
for a while before allocation in a different direction to allocate the real-time             
jobs. ​Real-time jobs are urgent jobs which require an immediate allocation of            
resources. ​Premium jobs are those users who don’t want to wait in the queue              
and want their job done quickly. ​Debug users are users who want to access              
debugging instruments very frequently but do not require a large amount of            
nodes. The ​regular jobs are lower in priority, they are the normal jobs which              
wait in the regular queue for a longer time before starting. The jobs described              
are in table 2. below.  
 
The current version of Cori includes usage of checkpoint-restart policy where           
the system has to write very big or too many checkpoint files, Cori uses burst               
buffers. Burst buffers are mainly used when a lot of I/O applications are             
involved. The file system for those checkpoint restarts is a scratch file system             
which is only for temporary files. 
 
Based on table 2, we can draw the following conclusions: Real-time jobs are             
higher in priority than premium jobs, regular jobs and scavenger jobs. Only the             
percentage of nodes used are charged with the charge factor (Jobs are charged             
by node-hours)​8 for the shared type of jobs. QOS Debug is higher in priority but               
takes Max Time=0.5 hours which means it is very frequently accessed but takes             
a very small number of nodes. A brief outlook of a priority order is shown               
below.  
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QOS Priority Max Nodes Max Time 
(hours) 

Real-time 1 Custom Custom 

Premium 2 1772 48 

Debug 3 64 0.5 

Regular 4 1932 48 

Shared 4 0.5 48 

Scavenger 5 1772 48 

Table 2. Cori Haswell - Queue Policy 
 
The current version of Cori suffers from a lot of real-time jobs issues mostly              
doesn’t work with the compatibility of the real-time jobs which are needed to be              
allocated with the resources immediately. For instance in the current scenario,           
when the real-time job is bigger than the node request value of 2000, the              
real-time job has to wait for a certain time before allocation. The previously             
proposed policies focused on giving more focus to real-time jobs but killing a             
normal job is impacting and interrupting a lot of other users’ work.            
Consequently, Seiger Leonenkov and Sergey Zhumatiy [6] focused on         
developing a portable SLURM scheduler as serving many users fulfill the           
normal constraints but with urgent requirements meet limitations of basic          
SLURM schedulers. Seiger et al., discussed adding some additional features to           
the basic SLURM scheduler to simplify the priority system. One of the features             
was to bring in faster ACL checks replacing SQL based checks. However, these             
impacts did not show much improvement for real-time workflows for          
immediate allocation, but only a minute level of speed up in the overall process              
and improved convenience for the admin. Previous approaches, as in [9], for            
real-time jobs, were successful in maintaining the start of real-time within 2            
minutes. Top priority jobs such as urgent jobs with smaller jobs by giving             
smaller jobs exclusive access to nodes. However, this technique could only           
achieve system usage of 92 percent and a waste of 8 percent with idle nodes.  
 
Our work estimates the costs of these proposals using real data from the users              
input in the cori logs. The introduced policies maintain a better handshake and             
doesn’t irritate the normal NERSC users nor the Real-time/Urgent job users, by            
not wasting much of their time. 
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V. FUTURE WORK 
 
 

The future work involves — Machine Learning Approach. Let's divide the task            
into different phases. In ​Phase 1​, we can collect the metric of wait-times from the               
draining policy graph Fig. 2.a. and also consider fetching other important details            
such as Job Id, Number of Nodes used by the job, Architecture used by the job,                
Maximum Resident Set Size, Wait-time calculated above in policy 1. In ​Phase 2​,             
we will use a supervised machine learning algorithm (​Supervised learning is when            
a computer is presented with examples of inputs and their desired outputs. The             
goal of the computer is to learn a general formula which maps inputs to outputs.)               
to train the data collected from phase 1 so as the model can understand and               
deduce a generalized formula. In ​Phase 3​, we will use the trained supervised             
learning model with the new data which will be the test data to let it predict the                 
output as wait-time based on the other configurations that user has given. With the              
three-phase approach we can predict the wait-time and use that information easily            
in Fig. 2.b. to look for idle nodes in the draining process and place the jobs which                 
fit in that position.  
 
Another approach could be to make decisions on normal batch jobs. That is, we              
can make a supervised model learn when the jobs are being canceled and what              
kind of jobs with what features, through the Job cancelation policy’s data. And             
using the 3 phase approach from above we can train and predict if that job will                
be canceled so as not to start that batch job at that time and start it after the                  
real-time job starts. Improvising the machine learning algorithm will impact the           
speed of the system and will help the Cori’s Slurm scheduler make immediate             
decision wisely and quickly. Automating these tightly coupled and emergency          
decision making will be much quicker by heuristic searches (A heuristic search            
is a method which might not always find the best solution but is guaranteed to               
find a good solution in a reasonable time).  
 
Improve these results by accounting for Backfill and predicting the running           
times. SLURM uses a backfilling algorithm. The running time given by the user             
is used as the actual running time is not known. Better running time estimations              
will give better performance. We can design a machine learning algorithm that;            
Use classic job parameters as input parameters. Works online (​to adapt new            
behaviors​), Use past knowledge of each user (​As each user has its own             
behavior​), Robust to noise i.e., ​Parameters are given by humans, jobs can            
segfault​. 
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VI. CONCLUSION 
 
 

Because HPC resources are limited, until now we lacked scheduling policies           
which can provide sufficient compute elasticity to run arbitrarily large jobs on            
demand. All the policies we introduced and evaluated here "pass the buck" in a              
different direction. That is, either the scheduler interrupts a fraction of the batch             
jobs for immediately allocating incoming real-time jobs or places the burden on            
real-time jobs by making them wait for a while before allocating resources.  
 
System-draining delays the start of the real-time job and squanders HPC           
resources with idle nodes. The impact analysis shows the delays are getting            
bigger with the increase in node requests and could have been used by other              
small jobs that fit that total duration of draining. In this way, it is possible to                
reduce the idle-time of the Cori.  
 
Job-cancellation gives sufficient priority to real-time jobs, but at the expense of            
severe disruption to other batch users whose jobs are canceled. The threshold            
factor discussed above will be really useful in decreasing the hours wasted by             
canceling jobs.  
 
"Pausing" batch jobs is a promising option that allows real-time jobs to start             
immediately and avoids wasting system resources but requires more elaborate          
changes to the scheduler and may increase memory pressure, especially for           
high-concurrency real-time jobs. But memory pressure arises only when the          
node request value goes more than 8192, which usually has not been the case              
for Cori users.  
 
By evaluating the policies of Section III, the observations show better results in             
terms of time and memory. Hopefully, this will be part of the implementation             
for the upcoming Perlmutter Supercomputer.  
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